Semantic Role Labeling Using Different Syntactic Views

نویسندگان

  • Sameer Pradhan
  • Wayne H. Ward
  • Kadri Hacioglu
  • James H. Martin
  • Daniel Jurafsky
چکیده

Semantic role labeling is the process of annotating the predicate-argument structure in text with semantic labels. In this paper we present a state-of-the-art baseline semantic role labeling system based on Support Vector Machine classifiers. We show improvements on this system by: i) adding new features including features extracted from dependency parses, ii) performing feature selection and calibration and iii) combining parses obtained from semantic parsers trained using different syntactic views. Error analysis of the baseline system showed that approximately half of the argument identification errors resulted from parse errors in which there was no syntactic constituent that aligned with the correct argument. In order to address this problem, we combined semantic parses from a Minipar syntactic parse and from a chunked syntactic representation with our original baseline system which was based on Charniak parses. All of the reported techniques resulted in performance improvements.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

برچسب‌زنی نقش معنایی جملات فارسی با رویکرد یادگیری مبتنی بر حافظه

Abstract Extracting semantic roles is one of the major steps in representing text meaning. It refers to finding the semantic relations between a predicate and syntactic constituents in a sentence. In this paper we present a semantic role labeling system for Persian, using memory-based learning model and standard features. Our proposed system implements a two-phase architecture to first identify...

متن کامل

برچسب‌زنی خودکار نقش‌های معنایی در جملات فارسی به کمک درخت‌های وابستگی

Automatic identification of words with semantic roles (such as Agent, Patient, Source, etc.) in sentences and attaching correct semantic roles to them, may lead to improvement in many natural language processing tasks including information extraction, question answering, text summarization and machine translation. Semantic role labeling systems usually take advantage of syntactic parsing and th...

متن کامل

Semantic Role Chunking Combining Complementary Syntactic Views

This paper describes a semantic role labeling system that uses features derived from different syntactic views, and combines them within a phrase-based chunking paradigm. For an input sentence, syntactic constituent structure parses are generated by a Charniak parser and a Collins parser. Semantic role labels are assigned to the constituents of each parse using Support Vector Machine classifier...

متن کامل

Combining Constituent and Dependency Syntactic Views for Chinese Semantic Role Labeling

This paper presents a novel featurebased semantic role labeling (SRL) method which uses both constituent and dependency syntactic views. Comparing to the traditional SRL method relying on only one syntactic view, the method has a much richer set of syntactic features. First we select several important constituent-based and dependency-based features from existing studies as basic features. Then,...

متن کامل

Semantic Role Labeling Using Complete Syntactic Analysis

In this paper we introduce a semantic role labeling system constructed on top of the full syntactic analysis of text. The labeling problem is modeled using a rich set of lexical, syntactic, and semantic attributes and learned using one-versus-all AdaBoost classifiers. Our results indicate that even a simple approach that assumes that each semantic argument maps into exactly one syntactic phrase...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005